主要參考教材: 1. Biochemistry,5/e,Jeremy M. Berg,John L. Tymoczko,Lubert Stryer,2002, W.H.Freeman Publishing House, 2. Lehninger Principles of Biochemistry 4/e, Nelson, David L. , Cox, Michael M. 2005, W.H. Freeman Publishing House 3. Biochemistry, An Introduction (2e), Trudy Mckee and James R.McKee, 1999, McGram -Hill Companies, Inc. 4. Molecular Cell Biology, 5e,Harvey Lodish, Arnold Berk, Paul Matsudaira, Chris A. Kaiser, Monty Krieger, Matthew P. Scott, Lawrence Zipursky, and James Darnell.,2004,W.H. Freeman Publishing House 5. 生物化學(xué)(第3版),王鏡巖,朱圣庚,徐長法主編,高等教育出版社,2002年版 6. 張來群,謝麗濤,李宏,生物化學(xué)習(xí)題集(第2版),科學(xué)出版社,2002年7月 7. 陳鈞輝,楊榮武,鄭偉娟等,生物化學(xué)習(xí)題解析(第2版),科學(xué)出版社,2001年9月 參考文獻: 蛋白質(zhì)組和蛋白質(zhì)組學(xué),現(xiàn)代臨床醫(yī)學(xué)生物工程學(xué)雜志,2003,9(3):29 曹志成,余堅文,蛋白質(zhì)組學(xué)—引領(lǐng)后基因組時代,中國生物工程雜志,2005,25(1):33-38 孟令波1 ,霍宏圖,蛋白質(zhì)組學(xué)的研究及其發(fā)展趨勢,哈爾濱學(xué)院學(xué)報,2005,26(10):125-131. 陳強,劉亞剛,楊雪,蛋白質(zhì)組學(xué)的研究進展,西南民族大學(xué)學(xué)報,2005,31(2):257-160 蛋白質(zhì)組學(xué)和疾病,現(xiàn)代臨床醫(yī)學(xué)生物工程學(xué)雜志,2004,10(2):177 張鷺,蛋白質(zhì)組學(xué)及其技術(shù)體系簡介,吉林特產(chǎn)高等?茖W(xué)校學(xué)報,2004,13(2):31-34 劉萍,章怡祎,蛋白質(zhì)組學(xué)技術(shù)在醫(yī)學(xué)研究中的應(yīng)用,湖北中醫(yī)學(xué)院學(xué)報,2006,8(1):67-69 司英健, 蛋白質(zhì)組學(xué)研究的內(nèi)容、方法及意義,國外醫(yī)學(xué)臨床生物化學(xué)與檢驗學(xué)分冊,2003,24(3):167-168 鄧琳,蛋白質(zhì)組學(xué)研究進展與趨勢,中國科技信息,2005,(13):43-44 王陽夢,何聰芬,董銀卯,蛋白質(zhì)組學(xué)研究中的新技術(shù),生物技術(shù)通報,2005,(5):46-50 蔣寧,周文霞,張永祥,藥物蛋白質(zhì)組學(xué)研究進展,中國新藥雜志,2005,14(12):1391-1394 鞠艷芳,高建恩,孫啟鴻,線粒體蛋白質(zhì)組學(xué)研究進展,第四軍醫(yī)大學(xué)學(xué)報,2006,27(8):760-762 周海濤,黎明濤,賈少微,藥物濫用研究中蛋白質(zhì)組學(xué)技術(shù)應(yīng)用進展,中華醫(yī)學(xué)雜志,2006,86(7):498-500 李紅梅,蛋白質(zhì)組學(xué)及其在腫瘤研究中的應(yīng)用,陜西師范大學(xué)學(xué)報(自然科學(xué)版),2005,33(6):128-130 朱紅,周海濤,蛋白質(zhì)組學(xué)及其主要技術(shù),癌變,畸變,突變,2005,17(5):318-320 李金國,宋華靜,李潔,蛋白質(zhì)組學(xué)研究及其在臨床中的應(yīng)用,社區(qū)醫(yī)學(xué)雜志,2006,4(2):35-37 譚毓治,蛋白質(zhì)組學(xué)與藥學(xué)研究,廣東藥學(xué)院學(xué)報,2005,21(6):768-770 劉文江,歐陽五慶,蛋白質(zhì)組學(xué)在新藥開發(fā)中的應(yīng)用,動物保健品,2004,(8):70-71 王菊蓉, 郭葆玉,蛋白質(zhì)組學(xué)在藥學(xué)研究中的應(yīng)用,醫(yī)學(xué)分子生物學(xué)雜志,2004, 1 (4):242-244 張朝政,許健,于漣,蛋白質(zhì)組學(xué)在藥學(xué)研究中的應(yīng)用進展,科技通報,2004,20(6):542-545 劉興鳳,定量蛋白質(zhì)組學(xué)檢測技術(shù)進展,瀘州醫(yī)學(xué)院學(xué)報,2005,28(6):567-569 周衛(wèi)東,后基因組時代的蛋白質(zhì)組學(xué),臨沂師范學(xué)院學(xué)報,2005,27(3):46-48 李小兵 方永奇,腦蛋白質(zhì)組學(xué)研究進展,中華檢驗醫(yī)學(xué)雜志,2006,29(2):182-184 楊澤松,陳建斌,藥物蛋白質(zhì)組學(xué)的研究進展,江西醫(yī)學(xué)院學(xué)報,2006,46(1):160-162 蔣寧,周文霞,張永祥,藥物蛋白質(zhì)組學(xué)研究進展,中國新藥雜志,2005,14(12):1391-1394 張曉勤,王慧中,水稻蛋白質(zhì)組學(xué)研究進展,湖北農(nóng)業(yè)科學(xué),2005,(6):106-109 盧義欽,劉俊凡,核仁的蛋白質(zhì)組學(xué),生命的化學(xué),2003,23(4):245-247 肖美芳,蛋白芯片技術(shù)及其在疾病診斷中的應(yīng)用現(xiàn)狀與展望,現(xiàn)代檢驗醫(yī)學(xué)雜志,2006,21(1):44-46 裴孝平,蛋白芯片技術(shù)及其在血液病中的應(yīng)用,國外醫(yī)學(xué)輸血及血液學(xué)分冊,2005,28(4):346-348 魯勁松,孫啟玉,蛋白質(zhì)芯片技術(shù)的研究進展,中國科學(xué)基金,2005,(5):277-281 岳文濤,蛋白質(zhì)芯片技術(shù)及其應(yīng)用,結(jié)核病與胸部腫瘤,2005,(3):157-160 余章斌,蛋白質(zhì)芯片檢測技術(shù)的研究進展,國外醫(yī)學(xué)臨床生物化學(xué)與檢驗學(xué)分冊,2005,26(11):841-843 于艷軍,蛋白質(zhì)芯片簡介,中學(xué)生物學(xué),2005,21(10):7-8 李銳國,蛋白質(zhì)組學(xué)在肝癌及其相關(guān)疾病研究中的應(yīng)用,中國腫瘤臨床,2005,32(16):957-960 盧衛(wèi)紅,鄭琦,生物芯片技術(shù)的應(yīng)用與展望,生物技術(shù)通訊,2006,17(2):293-295 龍桂友,劉杰,饒力群,植物蛋白質(zhì)組研究方法,湖南農(nóng)業(yè)大學(xué)學(xué)報(自然科學(xué)版),2005,31(3):342-346 韓萍,俞詩源,人類基因組計劃研究進展,西北師范大學(xué)學(xué)報(自然科學(xué)版),2005,41(5):96-101 易家康,怎樣破解癌癥基因組,世界科學(xué),2006,(1):18 雷鈞,遺傳學(xué)是用來轉(zhuǎn)禍為福的,世界科學(xué),2006,(1):7-9 雷瑞鵬,殷正坤,對“遺傳密碼”的哲學(xué)思考,自然辯證法通訊,2004,26(6):33-39 孫國鳳,法國基因組研究計劃,生物技術(shù)通報,2004,(6):50-51 王林杰, 高友鶴,復(fù)雜性狀疾病的系統(tǒng)生物學(xué)研究,基礎(chǔ)醫(yī)學(xué)與臨床,2005,25(1):11-15 吳瓊, 吳永忠,基因時代的若干人文反思,邊疆經(jīng)濟與文化,2006,(1):66-68 吳浩,曹明富,假基因,生物學(xué)通報,2005,40(5):20 張雅娟,生物化學(xué)發(fā)展中的分化與綜合,蘇州大學(xué)學(xué)報(工科版),2004,24(6):62-63 郝方,張雪蓮,張順寶,裴秀英,生物技術(shù)在新藥研發(fā)中的進展與展望,寧夏醫(yī)學(xué)雜志,2005,27(2):142-143 焦傳珍,系統(tǒng)生物學(xué)及其研究進展,生物學(xué)通報,2005,40(12):3-4 賴敏,試述人類基因組學(xué)的研究與中醫(yī)藥學(xué)的發(fā)展,實用中醫(yī)藥雜志,2006,22(5):314-315 張彥民, 李寶才, 朱利平, 戴偉鋒, 范家恒,多糖化學(xué)及其生物活性研究進展,昆明理工大學(xué)學(xué)報(理工版),2003,28(3):140-146 范學(xué)強, 遲延青, 姬勝利, 張?zhí)烀瘢?a class="channel_keylink" href="/pharm/2009/20090107144027_50379.shtml" target="_blank">肝素的化學(xué)修飾及其修飾產(chǎn)物生物活性的研究進展,中國生化藥物雜志,2004,25(1):41-44 周海燕,N_糖鏈參與細胞凋亡的研究進展,國外醫(yī)學(xué)·生理、病理科學(xué)與臨床分冊,2001,21(5):386-388 于春燕,郎剛?cè)A,劉萬順,海藻糖研究進展,青島大學(xué)學(xué)報,2000,13(2):55-59 詹潔,酵母N-糖基化工程研究進展,生物技術(shù)通訊,2004,15(3):272-274 張健,張其勝,田庚元,擬糖蛋白合成研究進展,有機化學(xué),2003,23(5):425-431 馮伯森,胡瑩,人及哺乳動物受精與糖蛋白的關(guān)系,生理科學(xué)進展,2003,34(1):86-89 吳祺,生物大分子分析方法的巨大進展,陜西師范大學(xué)繼續(xù)教育學(xué)報(西安),2003,20(4):113-116 張平,生物化學(xué)研究進展概述,福建畜牧獸醫(yī),2004,26(1):45-46 張莉,李娜,趙鳳林,糖胺聚糖分析測定的研究進展,分析化學(xué)評述與進展,2005,33(7):1023-1028 黃思玲, 凌沛學(xué), 婁紅祥, 張?zhí)烀瘢前肪厶橇字瑥?fù)合物的研究進展,中國生化藥物雜志,2005,26(5):306-308 張曉茹,李英霞,褚世棟,糖簇分子和糖樹狀分子的合成進展,有機化學(xué),2004,24(2):119-126 丁震,候曉華,糖蛋白2與胰腺炎,臨床內(nèi)科雜志,2004,21(6):429-430 仲娜,郝林華,王小如,糖蛋白藥物的研究進展,中國新藥雜志,2005,14(12):1400-1403 秦宏偉,糖的生物學(xué)效應(yīng)的研究進展,濟寧師專學(xué)報,2001,22(6):49-50 劉慧慧,李太武,蘇秀榕,糖蛋白及其在動物精卵識別中的作用,海洋科學(xué),2004,28(1):67-70 袁華茂,宋金明,糖類化合物的化學(xué)修飾及其生物活性的研究進展,海洋科學(xué),2003,27(3):27-32 焦克芳,陳望忠,曲紅,糖類與生命科學(xué)研究進展,大學(xué)化學(xué),1999,14(1):28-31 白麗榮,糖生物學(xué)研究進展,生物學(xué)通報,2002,37(10):7-8 馬盛群,糖生物學(xué)與糖蛋白研究進展,南京農(nóng)專學(xué)報,2001,17(1):4-8 楊珺,蔡紹皙,鄒全明,糖組學(xué)研究技術(shù)及其進展,生物化學(xué)與生物物理進展,2005,,32(1):9-12 盧雯靜,糖組學(xué)研究技術(shù)進展及其意義,國際檢驗醫(yī)學(xué)雜志,2006,27(4):366-368 王洋,崔繼哲,周靜,植物表達重組蛋白的N_糖基化研究進展,中國農(nóng)學(xué)通報,2005,21(10):174-179 朱科學(xué),周惠明,郭曉娜,植物來源糖蛋白的結(jié)構(gòu)與功能,食品與發(fā)酵工業(yè),2002,28(12):57-61 謝軼,余柏松,一種新的糖肽類抗生素雷莫拉寧研究進展,國外醫(yī)藥抗生素分冊,2003,24(2):88-92 貝特類調(diào)脂藥物的研究及應(yīng)用進展,中國新藥與臨床雜志,2000,19(5):350-353 李黎,謝玉才,陸國平,他汀類調(diào)脂作用的藥物基因組學(xué),中華心血管病雜志,2006,34(1):88-91 李建軍,王德勝,煙酸類調(diào)脂藥物的現(xiàn)狀與展望,醫(yī)師進修雜志,2001,24(12):10-11 魯晶紅,符芳,栗慶豐,因芯片技術(shù)及其應(yīng)用,畜牧獸醫(yī)科技信息,2006,(3) 江南,陳洪,生物芯片的研究和應(yīng)用現(xiàn)狀,株洲工學(xué)院學(xué)報,2005,19(6):84-89 張喜平 陸貝,組織芯片技術(shù)現(xiàn)狀與應(yīng)用,醫(yī)學(xué)研究雜志,2006,35(4):63-64 康熙雄,免疫芯片,齊魯醫(yī)學(xué)檢驗,2005,16(3):3-5 馬大龍,免疫組學(xué)21世紀免疫學(xué)家的新挑戰(zhàn),中華微生物學(xué)和免疫學(xué)雜志,2005,25(9):697-801 賈清,劉亞剛,吳皎,生物芯片技術(shù)的研究進展,西南民族大學(xué)學(xué)報(自然科學(xué)版),2005年增刊,50-52 潘繼紅,生物芯片技術(shù)在新藥篩選中的應(yīng)用,山東醫(yī)藥,2005,45(26):73-74 強伯勤,我國人類基因組研究的回顧,醫(yī)學(xué)研究雜志,2006,35(2):1-2 張舒雅,藥物基因組學(xué)及生物芯片應(yīng)用,世界臨床藥物,2006,27(5):314-316 盧衛(wèi)紅,鄭琦,生物芯片技術(shù)的應(yīng)用與展望,生物技術(shù)通訊,2006,17(2):293-295 N.R. Pace. 2000. The universal nature of biochemistry Proc. Natl. Acad. Sci. U. S. A. 98: 805-808. L.E. Orgel. 1987. Evolution of the genetic apparatus: A review Cold Spring Harbor Symp. Quant. Biol. 52: 9-16. A. Lazcano and S.L. Miller. 1996. The origin and early evolution of life: Prebiotic chemistry, the pre-RNA world, and time Cell 85: 793-798. L.E. Orgel. 1998. The origin of life: A review of facts and speculations Trends Biochem. Sci. 23: 491-495. Darwin, C., 1975. On the Origin of Species, a Facsimile of the First Edition. Harvard University Press. Gesteland, R. F., Cech, T., and Atkins, J. F., 1999. The RNA World . Cold Spring Harbor Laboratory Press. Dawkins, R., 1996. The Blind Watchmaker. Norton. Smith, J. M., and Szathmáry, E., 1995. The Major Transitions in Evolution . W. H. Freeman and Company. S.L. Miller. 1987. Which organic compounds could have occurred on the prebiotic earth? Cold Spring Harbor Symp. Quant. Biol. 52: 17-27. F.H. Westheimer. 1987. Why nature chose phosphates Science 235: 1173-1178. M. Levy and S.L. Miller. 1998. The stability of the RNA bases: Implications for the origin of life Proc. Natl. Acad. Sci. U. S. A. 95: 7933-7938. R. Sanchez, J. Ferris, and L.E. Orgel. 1966. Conditions for purine synthesis: Did prebiotic synthesis occur at low temperatures? Science 153: 72-73. D.R. Mills, R.L. Peterson, and S. Spiegelman. 1967. An extracellular Darwinian experiment with a self-duplicating nucleic acid molecule Proc. Natl. Acad. Sci. U. S. A. 58: 217-224. R. Levisohn and S. Spiegelman. 1969. Further extracellular Darwinian experiments with replicating RNA molecules: Diverse variants isolated under different selective conditions Proc. Natl. Acad. Sci. U. S. A. 63: 805-811. D.S. Wilson and J.W. Szostak. 1999. In vitro selection of functional nucleic acids Annu. Rev. Biochem. 68: 611-647. T.R. Cech. 1993. The efficiency and versatility of catalytic RNA: Implications for an RNA world Gene 135: 33-36. L.E. Orgel. 1992. Molecular replication Nature 358: 203-209. W.S. Zielinski and L.E. Orgel. 1987. Autocatalytic synthesis of a tetranucleotide analogue Nature 327: 346-347. K.E. Nelson, M. Levy, and S.L. Miller. 2000. Peptide nucleic acids rather than RNA may have been the first genetic molecule Proc. Natl. Acad. Sci. U. S. A. 97: 3868-3871. P. Reichard. 1997. The evolution of ribonucleotide reduction Trends Biochem. Sci. 22: 81-85. A. Jordan and P. Reichard. 1998. Ribonucleotide reductases Annu. Rev. Biochem. 67: 71-98. T.H. Wilson and P.C. Maloney. 1976. Speculations on the evolution of ion transport mechanisms Fed. Proc. 35: 2174-2179. T.H. Wilson and E.C. Lin. 1980. Evolution of membrane bioenergetics J. Supramol. Struct. 13: 421-446. G. Mangiarotti, S. Bozzaro, S. Landfear, and H.F. Lodish. 1983. Cell-cell contact, cyclic AMP, and gene expression during development of Dictyostelium discoideum Curr. Top. Dev. Biol. 18: 117-154. C. Kenyon. 1988. The nematode Caenorhabditis elegans Science 240: 1448-1453. J. Hodgkin, R.H. Plasterk, and R.H. Waterston. 1995. The nematode Caenorhabditis elegans and its genome Science 270: 410-414. J.S. Richardson. 1981. The anatomy and taxonomy of protein structure Adv. Protein Chem. 34: 167-339. R.F. Doolittle. 1985. Proteins Sci. Am. 253: (4) 88-99. F.M. Richards. 1991. The protein folding problem Sci. Am. 264: (1) 54-57. A.L. Weber and S.L. Miller. 1981. Reasons for the occurrence of the twenty coded protein amino acids J. Mol. Evol. 17: 273-284. M.W. Hunkapiller and L.E. Hood. 1983. Protein sequence analysis: Automated microsequencing Science 219: 650-659. B. Merrifield. 1986. Solid phase synthesis Science 232: 341-347. F. Sanger. 1988. Sequences, sequences, sequences Annu. Rev. Biochem. 57: 1-28. C. Milstein. 1980. Monoclonal antibodies Sci. Am. 243: (4) 66-74. S. Moore and W.H. Stein. 1973. Chemical structures of pancreatic ribonuclease and deoxyribonuclease Science 180: 458-464. Deutscher, M. (Ed.), 1997. Guide to Protein Purification. Academic Press. Scopes, R. K., and Cantor, C., 1994. Protein Purification: Principles and Practice (3d ed.). Springer Verlag. M.J. Dunn. 1997. Quantitative two-dimensional gel electrophoresis: From proteins to proteomes Biochem. Soc. Trans. 25: 248-254. R. Aebersold, G.D. Pipes, R.E. Wettenhall, H. Nika, and L.E. Hood. 1990. Covalent attachment of peptides for high sensitivity solid-phase sequence analysis Anal. Biochem. 187: 56-65. W.P. Blackstock and M.P. Weir. 1999. Proteomics: Quantitative and physical mapping of cellular proteins Trends Biotechnol. 17: 121-127. M.J. Dutt and K.H. Lee. 2000. Proteomic analysis Curr. Opin. Biotechnol. 11: 176-179. A. Pandey and M. Mann. 2000. Proteomics to study genes and genomes Nature 405: 837-846. G. K?hler and C. Milstein. 1975. Continuous cultures of fused cells secreting antibody of predefined specificity Nature 256: 495-497. Goding, J. W., 1996. Monoclonal Antibodies: Principles and Practice. Academic Press. R.Y. Tsien. 1998. The green fluorescent protein Annu. Rev. Biochem. 67: 509-544. J.M. Kendall and M.N. Badminton. 1998. Aequorea victoria bioluminescence moves into an exciting era Trends Biotechnol. 16: 216-234. G. Felsenfeld. 1985. DNA Sci. Am. 253: (4) 58-67. J.E. Darnell Jr. 1985. RNA Sci. Am. 253: (4) 68-78. R.E. Dickerson. 1983. The DNA helix and how it is read Sci. Am. 249: (6) 94-111. F.H.C. Crick,. 1954.. The structure of the hereditary material Sci. Am. 191: (4): 54-61.. P. Chambon. 1981. Split genes Sci. Am. 244: (5) 60-71. J.D. Watson and F.H.C. Crick. 1953. Molecular structure of nucleic acids. A structure for deoxyribose nucleic acid. Nature 171: 737-738. J.D. Watson and F.H.C. Crick. 1953. Genetic implications of the structure of deoxyribonucleic acid Nature 171: 964-967. M. Meselson and F.W. Stahl. 1958. The replication of DNA in Escherichia coli Proc. Natl. Acad. Sci. U.S.A. 44: 671-682. Saenger, W., 1984. Principles of Nucleic Acid Structure. Springer Verlag. R.E. Dickerson, H.R. Drew, B.N. Conner, R.M. Wing, A.V. Fratini, and M.L. Kopka. 1982. The anatomy of A-, B-, and Z-DNA Science 216: 475-485. Sinden, R. R., 1994. DNA structure and function. Academic Press. Kornberg, A., and Baker, T. A., 1992. DNA Replication (2d ed.). W. H. Freeman and Company. U. Hübscher, H.-P. Nasheuer, and J.E. Syv?oja. 2000. Eukaryotic DNA polymerases: A growing family Trends Biochem. Sci. 25: 143-147. C.A. Brautigam and T.A. Steitz. 1998. Structural and functional insights provided by crystal structures of DNA polymerases and their substrate complexes Curr. Opin. Struct. Biol. 8: 54-63. F. Jacob and J. Monod. 1961. Genetic regulatory mechanisms in the synthesis of proteins J. Mol. Biol. 3: 318-356. S. Brenner, F. Jacob, and M. Meselson. 1961. An unstable intermediate carrying information from genes to ribosomes for protein synthesis Nature 190: 576-581. B.D. Hall and S. Spiegelman. 1961. Sequence complementarity of T2-DNA and T2-specific RNA Proc. Natl. Acad. Sci. U.S.A. 47: 137-146. F.H.C. Crick, L. Barnett, S. Brenner, and R.J. Watts-Tobin. 1961. General nature of the genetic code for proteins Nature 192: 1227-1232. Nirenberg, M., 1968. The genetic code. In Nobel Lectures: Physiology or Medicine (1963-1970), pp. 372 395. American Elsevier (1973). F.H.C. Crick. 1958. On protein synthesis Symp. Soc. Exp. Biol. 12: 138-163. R.D. Knight, S.J. Freeland, and L.F. Landweber. 1999. Selection, history and chemistry: The three faces of the genetic code Trends Biochem. Sci. 24: (6) 241-247. P.A. Sharp. 1988. RNA splicing and genes J. Am. Med. Assoc. 260: 3035-3041. R.L. Dorit, L. Schoenbach, and W. Gilbert. 1990. How big is the universe of exons? Science 250: 1377-1382. M. Cochet, F. Gannon, R. Hen, L. Maroteaux, F. Perrin, and P. Chambon. 1979. Organization and sequence studies of the 17-piece chicken conalbumin gene Nature 282: 567-574. S.M. Tilghman, D.C. Tiemeier, J.G. Seidman, B.M. Peterlin, M. Sullivan, J.V. Maizel, and P. Leder. 1978. Intervening sequence of DNA identified in the structural portion of a mouse b-globin gene Proc. Natl. Acad. Sci. U.S.A. 75: 725-729. Watson, J. D., 1968. The Double Helix. Atheneum. McCarty, M., 1985. The Transforming Principle: Discovering That Genes Are Made of DNA. Norton. Cairns, J., Stent, G. S., and Watson, J. D., 2000. Phage and the Origins of Molecular Biology. Cold Spring Harbor Laboratory. Olby, R., 1974. The Path to the Double Helix. University of Washington Press. Portugal, F. H., and Cohen, J. S., 1977. A Century of DNA: A History of the Discovery of the Structure and Function of the Genetic Substance. MIT Press. Judson, H., 1996. The Eighth Day of Creation. Cold Spring Harbor Laboratory. P. Berg. 1981. Dissections and reconstructions of genes and chromosomes Science 213: 296-303. W. Gilbert. 1981. DNA sequencing and gene structure Science 214: 1305-1312. 執(zhí)業(yè)獸醫(yī)F. Sanger. 1981. Determination of nucleotide sequences in DNA Science 214: 1205-1210. K.B. Mullis. 1990. The unusual origin of the polymerase chain reaction Sci. Am. 262: (4) 56-65. N. Arnheim and H. Erlich. 1992. Polymerase chain reaction strategy Annu. Rev. Biochem. 61: 131-156. Kirby, L.T. (Ed.), 1997. DNA Fingerprinting: An Introduction. Stockton Press. B.I. Eisenstein. 1990. The polymerase chain reaction: A new method for using molecular genetics for medical diagnosis N. Engl. J. Med. 322: 178-183. K.P. Foley, M.W. Leonard, and J.D. Engel. 1993. Quantitation of RNA using the polymerase chain reaction Trends Genet. 9: 380-386. S. P??bo. 1993. Ancient DNA Sci. Am. 269: (5) 86-92. C.S. Gasser and R.T. Fraley. 1992. Transgenic crops Sci. Am. 266: (6) 62-69. C.S. Gasser and R.T. Fraley. 1989. Genetically engineering plants for crop improvement Science 244: 1293-1299. K. Shimamoto, R. Terada, T. Izawa, and H. Fujimoto. 1989. Fertile transgenic rice plants regenerated from transformed protoplasts Nature 338: 274-276. M.-D. Chilton. 1983. A vector for introducing new genes into plants Sci. Am. 248: (6) 50. G. Hansen and M.S. Wright. 1999. Recent advances in the transformation of plants Trends Plant Sci. 4: 226-231. J. Hammond. 1999. Overview: The many uses of transgenic plants Curr. Top. Microbiol. Immunol. 240: 1-20. J.J. Finer, K.R. Finer, and T. Ponappa. 1999. Particle bombardment mediated transformation Curr. Top. Microbiol. Immunol. 240: 60-80. D.E. Koshland Jr. 1987. Evolution of catalytic function Cold Spring Harbor Symp. Quant. Biol. 52: 1-7. W.P. Jencks. 1987. Economics of enzyme catalysis Cold Spring Harbor Symp. Quant. Biol. 52: 65-73. R.A. Lerner and A. Tramontano. 1988. Catalytic antibodies Sci. Am. 258: (3) 58-70. V.L. Schramm. 1998. Enzymatic transition states and transition state analog design Annu. Rev. Biochem. 67: 693-720. L. Pauling. 1948. Nature of forces between large molecules of biological interest Nature 161: 707-709. G.E. Leinhard. 1973. Enzymatic catalysis and transition-state theory Science 180: 149-154. J. Kraut. 1988. How do enzymes work? Science 242: 533-540. D.J. Waxman and J.L. Strominger. 1983. Penicillin-binding proteins and the mechanism of action of b-lactam antibiotics Annu. Rev. Biochem. 52: 825-869. E.P. Abraham. 1981. The b-lactam antibiotics Sci. Am. 244: 76-86. C.T. Walsh. 1984. Suicide substrates, mechanism-based enzyme inactivators: Recent developments Annu. Rev. Biochem. 53: 493-535. R.M. Stroud. 1974. A family of protein-cutting proteins Sci. Am. 231: (1) 74-88. J. Kraut. 1977. Serine proteases: structure and mechanism of catalysis Annu. Rev. Biochem. 46: 331-358. S. Lindskog. 1997. Structure and mechanism of carbonic anhydrase,Pharmacol. Ther. 74: 1-20. A. Jeltsch, J. Alves, G. Maass, and A. Pingoud. 1992. On the catalytic mechanism of EcoRI and EcoRV: A detailed proposal based on biochemical results, structural data and molecular modelling FEBS Lett. 304: 4-8. H. Yan and M.-D. Tsai. 1999. Nucleoside monophosphate kinases: Structure, mechanism, and substrate specificity Adv. Enzymol. Relat. Areas Mol. Biol. 73: 103-134. E. Lolis and G.A. Petsko. 1990. Transition-state analogues in protein crystallography: Probes of the structural source of enzyme catalysis Annu. Rev. Biochem. 59: 597-630. F.K. Winkler, D.W. Banner, C. Oefner, D. Tsernoglou, R.S. Brown, S.P. Heathman, R.K. Bryan, P.D. Martin, K. Petratos, and K.S. Wilson. 1993. The crystal structure of EcoRV endonuclease and of its complexes with cognate and non-cognate DNA fragments EMBO J. 12: 1781-1795. D. Kostrewa and F.K. Winkler. 1995. Mg2+ binding to the active site of EcoRV endonuclease: A crystallographic study of complexes with substrate and product DNA at 2 ? resolution Biochemistry 34: 683-696. A. Athanasiadis, M. Vlassi, D. Kotsifaki, P.A. Tucker, K.S. Wilson, and M. Kokkinidis. 1994. Crystal structure of PvuII endonuclease reveals extensive structural homologies to EcoRV Nat. Struct. Biol. 1: 469-475. M.D. Sam and J.J. Perona. 1999. Catalytic roles of divalent metal ions in phosphoryl transfer by EcoRV endonuclease Biochemistry 38: 6576-6586. A. Jeltsch and A. Pingoud. 1996. Horizontal gene transfer contributes to the wide distribution and evolution of type II restriction-modification systems J. Mol. Evol. 42: 91-96. E.R. Kantrowitz and W.N. Lipscomb. 1990. Escherichia coli aspartate transcarbamoylase: The molecular basis for a concerted allosteric transition Trends Biochem. Sci. 15: 53-59. H.K. Schachman. 1988. Can a simple model account for the allosteric transition of aspartate transcarbamoylase? J. Biol. Chem. 263: 18583-18586. Dickerson, R. E., and Geis, I.,1983. Hemoglobin: Structure, Function, Evolution and Pathology. Benjamin Cummings. H. Neurath. 1989. Proteolytic processing and physiological regulation Trends Biochem. Sci. 14: 268-271. W. Bode and R. Huber. 1992. Natural protein proteinase inhibitors and their interaction with proteinases Eur. J. Biochem. 204: 433-451. M.F. Perutz, A.J. Wilkinson, M. Paoli, and G.G. Dodson. 1998. The stereochemical mechanism of the cooperative effects in hemoglobin revisited Annu. Rev. Biophys. Biomol. Struct. 27: 1-34. G.K. Ackers. 1998. Deciphering the molecular code of hemoglobin allostery Adv. Protein Chem. 51: 185-253. G.K. Ackers, M.L. Doyle, D. Myers, and M.A. Daugherty. 1992. Molecular code for cooperativity in hemoglobin Science 255: 54-63. G. Fermi, M.F. Perutz, B. Shaanan, and R. Fourme. 1984. The crystal structure of human deoxyhaemoglobin at 1.74 ? resolution J. Mol. Biol. 175: 159-174. J.V. Kilmartin and L. Rossi-Bernardi. 1973. Interaction of hemoglobin with hydrogen ions, carbon dioxide, and organic phosphates Physiol. Rev. 53: 836-890. P. Fuentes-Prior, Y. Iwanaga, R. Huber, R. Pagila, G. Rumennik, M. Seto, J. Morser, D.R. Light, and W. Bode. 2000. Structural basis for the anticoagulant activity of the thrombin-thrombomodulin complex Nature. 404: 518-525. R.W. Herzog and K.A. High. 1998. Problems and prospects in gene therapy for hemophilia Curr. Opin. Hematol. 5: 321-326. R.F. Doolittle. 1981. Fibrinogen and fibrin Sci. Am. 245: (12) 126-135. R.M. Lawn and G.A. Vehar. 1986. The molecular genetics of hemophilia Sci. Am. 254: (3) 48-65. J.H. Brown, N. Volkmann, G. Jun, A.H. Henschen-Edman, and C. Cohen. 2000. The crystal structure of modified bovine fibrinogen Proc. Natl. Acad. Sci. U. S. A. 97: 85-90. M.T. Stubbs, H. Oschkinat, I. Mayr, R. Huber, H. Angliker, S.R. Stone, and W. Bode. 1992. The interaction of thrombin with fibrinogen: A structural basis for its specificity Eur. J. Biochem. 206: 187-195. T.J. Rydel, A. Tulinsky, W. Bode, and R. Huber. 1991. Refined structure of the hirudin-thrombin complex J. Mol. Biol. 221: 583-601. N. Sharon and H. Lis. 1993. Carbohydrates in cell recognition Sci. Am. 268: (1) 82-89. L.A. Lasky. 1992. Selectins: Interpreters of cell-specific carbohydrate information during inflammation Science 258: 964-969. P. Weiss and G. Ashwell. 1989. The asialoglycoprotein receptor: Properties and modulation by ligand Prog. Clin. Biol. Res. 300: 169-184. N. Sharon. 1980. Carbohydrates Sci. Am. 245: (5) 90-116. J.C. Paulson. 1989. Glycoproteins: What are the sugar side chains for? Trends Biochem. Sci. 14: 272-276. R.J. Woods. 1995. Three-dimensional structures of oligosaccharides Curr. Opin. Struct. Biol. 5: 591-598. P. De Weer. 2000. A century of thinking about cell membranes Annu. Rev. Physiol. 62: 919-926. M.S. Bretscher. 1985. The molecules of the cell membrane Sci. Am. 253: (4) 100-108. N. Unwin and R. Henderson. 1984. The structure of proteins in biological membranes Sci. Am. 250: (2) 78-94. J. Deisenhofer and H. Michel. 1989. The photosynthetic reaction centre from the purple bacterium Rhodopseudomonas viridis EMBO J. 8: 2149-2170. S.J. Singer and G.L. Nicolson. 1972. The fluid mosaic model of the structure of cell membranes Science 175: 720-731. K. Jacobson, E.D. Sheets, and R. Simson. 1995. Revisiting the fluid mosaic model of membranes Science 268: 1441-1442. M.J. Saxton and K. Jacobson. 1997. Single-particle tracking: Applications to membrane dynamics Annu. Rev. Biophys. Biomol. Struct. 26: 373-399. M. Bloom, E. Evans, and O.G. Mouritsen. 1991. Physical properties of the fluid lipid-bilayer component of cell membranes: A perspective Q. Rev. Biophys. 24: 293-397. E.L. Elson. 1986. Membrane dynamics studied by fluorescence correlation spectroscopy and photobleaching recovery Soc. Gen. Physiol. Ser. 40: 367-383. A. Zachowski and P.F. Devaux. 1990. Transmembrane movements of lipids Experientia 46: 644-656. P.F. Devaux. 1992. Protein involvement in transmembrane lipid asymmetry Annu. Rev. Biophys. Biomol. Struct. 21: 417-439. J.R. Silvius. 1992. Solubilization and functional reconstitution of biomembrane components Annu. Rev. Biophys. Biomol. Struct. 21: 323-348. . De Weer. 2000. A century of thinking about cell membranes Annu. Rev. Physiol. 62: 919-926. M.S. Bretscher. 1985. The molecules of the cell membrane Sci. Am. 253: (4) 100-108. N. Unwin and R. Henderson. 1984. The structure of proteins in biological membranes Sci. Am. 250: (2) 78-94. J. Deisenhofer and H. Michel. 1989. The photosynthetic reaction centre from the purple bacterium Rhodopseudomonas viridis EMBO J. 8: 2149-2170. S.J. Singer and G.L. Nicolson. 1972. The fluid mosaic model of the structure of cell membranes Science 175: 720-731. K. Jacobson, E.D. Sheets, and R. Simson. 1995. Revisiting the fluid mosaic model of membranes Science 268: 1441-1442. J.-L. Popot and D.M. Engleman. 2000. Helical membrane protein folding, stability and evolution Annu. Rev. Biochem. 69: 881-922. S.H. White and W.C. Wimley. 1999. Membrane protein folding and stability: Physical principles Annu. Rev. Biophys. Biomol. Struct. 28: 319-365. F.M. Marassi and S.J. Opella. 1998. NMR structural studies of membrane proteins Curr. Opin. Struct. Biol. 8: 640-648. R. Lipowsky. 1991. The conformation of membranes Nature 349: 475-481. C. Altenbach, T. Marti, H.G. Khorana, and W.L. Hubbell. 1990. Transmembrane protein structure: Spin labeling of bacteriorhodopsin mutants Science 248: 1088-1092. G.D. Fasman and W.A. Gilbert. 1990. The prediction of transmembrane protein sequences and their conformation: An evaluation Trends Biochem. Sci. 15: 89-92. M.J. Welsh and A.E. Smith. 1995. Cystic fibrosis Sci. Am. 273: (6) 52-59. N. Unwin. 1993. Neurotransmitter action: Opening of ligand-gated ion channels Cell 72: 31-41. G.E. Lienhard, J.W. Slot, D.E. James, and M.M. Mueckler. 1992. How cells absorb glucose Sci. Am. 266: (1) 86-91. E. Neher and B. Sakmann. 1992. The patch clamp technique Sci. Am. 266: (3) 28-35. B. Sakmann. 1992. Elementary steps in synaptic transmission revealed by currents through single ion channels Science 256: 503-512. M.M. McGrane, J.S. Yun, Y.M. Patel, and R.W. Hanson. 1992. Metabolic control of gene expression: In vivo studies with transgenic mice Trends Biochem. Sci. 17: 40-44. G.J. Kemp. 2000. Studying metabolic regulation in human muscle Biochem. Soc. Trans. 28: 100-103. H.C. Towle, E.N. Kaytor, and H.M. Shih. 1996. Metabolic regulation of hepatic gene expression Biochem. Soc. Trans. 24: 364-368. J.H. Hofmeyr. 1995. Metabolic regulation: A control analytic perspective J. Bioenerg. Biomembr. 27: 479-490. Atkinson, D. E., 1977. Cellular Energy Metabolism and Its Regulation. Academic Press. M. Ereciska and D.F. Wilson. 1978. Homeostatic regulation of cellular energy metabolism Trends Biochem. Sci. 3: 219-223. J.D. Scott and T. Pawson. 2000. Cell communication: The inside story Sci. Am. 282: (6) 7279. T. Pawson. 1995. Protein modules and signalling networks Nature 373: 573-580. J.H. Hurley and J.A. Grobler. 1997. Protein kinase C and phospholipase C: Bilayer interactions and regulation Curr. Opin. Struct. Biol. 7: 557-565. T. Okada, O.P. Ernst, K. Palczewski, and K.P. Hofmann. 2001. Activation of rhodopsin: New insights from structural and biochemical studies Trends Biochem. Sci. 26: 318-324. R.Y. Tsien. 1992. Intracellular signal transduction in four dimensions: From molecular design to physiology Am. J. Physiol. 263: C723-C728. Loewenstein, W. R., 1999. Touchstone of Life : Molecular Information, Cell Communication, and the Foundations of Life. Oxford University Press. J.R. Knowles. 1991. Enzyme catalysis: Not different, just better Nature 350: 121-124. D. Granner and S. Pilkis. 1990. The genes of hepatic glucose metabolism J. Biol. Chem. 265: 10173-10176. M.M. McGrane, J.S. Yun, Y.M. Patel, and R.W. Hanson. 1992. Metabolic control of gene expression: In vivo studies with transgenic mice Trends Biochem. Sci. 17: 40-44. S.J. Pilkis and D.K. Granner. 1992. Molecular physiology of the regulation of hepatic gluconeogenesis and glycolysis Annu. Rev. Physiol. 54: 885-909. L.J. Reed and M.L. Hackert. 1990. Structure-function relationships in dihydrolipoamide acyltransferases J. Biol. Chem. 265: 8971-8974. A. Mattevi, G. Obmolova, E. Schulze, K.H. Kalk, A.H. Westphal, A. De Kok, and W.G. Hol. 1992. Atomic structure of the cubic core of the pyruvate dehydrogenase multienzyme complex Science 255: 1544-1550. M.W. Gray, G. Burger, and B.F. Lang. 1999. Mitochondrial evolution Science 283: 1476-1481. D.C. Wallace. 1997. Mitochondrial DNA in aging and disease Sci. Am. 277: (2) 40-47. M. Saraste. 1999. Oxidative phosphorylation at the fin de siècle Science 283: 1488-1493. B.E. Shultz and S.I. Chan. 2001. Structures and proton-pumping strategies of mitochondrial respiratory enzymes Ann. Rev. Biophys. Biomol. Struct. 30: 23-65. C.C. Moser, J.M. Keske, K. Warncke, R.S. Farid, and P.L. Dutton. 1992. Nature of biological electron transfer Nature 355: 796-802. R. Huber. 1989. A structural basis of light energy and electron transfer in biology EMBO J. 8: 2125-2147. J. Deisenhofer and H. Michel. 1989. The photosynthetic reaction centre from the purple bacterium Rhodopseudomonas viridis EMBO J. 8: 2149-2170. J. Barber and B. Andersson. 1994. Revealing the blueprint of photosynthesis Nature 370: 31-34. Horecker, B. L., 1976.Unravelling the pentose phosphate pathway. In Reflections on Biochemistry (pp. 65 72), edited by A. Kornberg, L. Cornudella, B. L. Horecker, and J. Oro, Pergamon. Levi, P., 1984. Carbon. In The Periodic Table. Random House. E. Melendez-Hevia and A. Isidoro. 1985. The game of the pentose phosphate cycle J. Theor. Biol. 117: 251-263. J. Barber and B. Andersson. 1994. Revealing the blueprint of photosynthesis Nature 370: 31-34. S. Rawsthorne. 1992. Towards an understanding of C3-C4 photosynthesis Essays Biochem. 27: 135-146. S.J. Wakil. 1989. Fatty acid synthase, a proficient multifunctional enzyme Biochemistry 28: 4523-4530. B.B. Rasmussen and R.R. Wolfe. 1999. Regulation of fatty acid oxidation in skeletal muscle Annu. Rev. Nutr. 19: 463-484. C.F. Semenkovich. 1997. Regulation of fatty acid synthase (FAS) Prog. Lipid Res. 36: 43-53. H.S. Sul, C.M. Smas, D. Wang, and L. Chen. 1998. Regulation of fat synthesis and adipose differentiation Prog. Nucleic Acid Res. Mol. Biol. 60: 317-345. G. Wolf. 1996. Nutritional and hormonal regulation of fatty acid synthase Nutr. Rev. 54: 122-123. M.R. Munday and C.J. Hemingway. 1999. The regulation of acetyl-CoA carboxylase: A potential target for the action of hypolipidemic agents Adv. Enzyme Regul. 39: 205-234. J.J. Barycki, L.K. O"Brien, A.W. Strauss, and L.J. Banaszak. 2000. Sequestration of the active site by interdomain shifting: Crystallographic and spectroscopic evidence for distinct conformations of l-3-hydroxyacyl-CoA dehydrogenase J. Biol. Chem. 275: 27186-27196. R.R. Ramsay. 2000. The carnitine acyltransferases: Modulators of acyl-CoA-dependent reactions Biochem. Soc. Trans. 28: 182-186. S. Eaton, K. Bartlett, and M. Pourfarzam. 1996. Mammalian mitochondrial beta-oxidation Biochem. J. 320: 345-357. C. Thorpe and J.J. Kim. 1995. Structure and mechanism of action of the acyl-CoA dehydrogenases FASEB J. 9: 718-725. D.W. Foster. 1984. From glycogen to ketonesand back Diabetes 33: 1188-1199. J.D. McGarry and D.W. Foster. 1980. Regulation of hepatic fatty acid oxidation and ketone body production Annu. Rev. Biochem. 49: 395-420. Y.-M. Zhang, M.S. Rao, R.J. Heath, A.C. Price, A.J. Olson, C.O. Rock, and S.W. White. 2001. Identification and analysis of the acyl carrier protein (ACP) docking site on beta-ketoacyl-ACP synthase III J. Biol. Chem. 276: 8231-8238. C. Davies, R.J. Heath, S.W. White, and C.O. Rock. 2000. The 1 8 ? crystal structure and active-site architecture of beta-ketoacyl-acyl carrier protein synthase III (FabH) from Escherichia coli Structure Fold Des. 8: 185-195. R.M. Denton, K.J. Heesom, S.K. Moule, N.J. Edgell, and P. Burnett. 1997. Signalling pathways involved in the stimulation of fatty acid synthesis by insulin Biochem. Soc. Trans. 25: 1238-1242. J.K. Stoops, S.J. Kolodziej, J.P. Schroeter, J.P. Bretaudiere, and S.J. Wakil. 1992. Structure-function relationships of the yeast fatty acid synthase: Negative-stain, cryo-electron microscopy, and image analysis studies of the end views of the structure Proc. Natl. Acad. Sci. USA 89: 6585-6589. T.M. Loftus, D.E. Jaworsky, G.L. Frehywot, C.A. Townsend, G.V. Ronnett, M.D. Lane, and F.P. Kuhajda. 2000. Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors Science 288: 2379-2381. Y.M. Torchinsky. 1989. Transamination: Its discovery, biological and chemical aspects Trends Biochem. Sci. 12: 115-117. R.C. Eisensmith and S.L.C. Woo. 1991. Phenylketonuria and the phenylalanine hydroxylase gene Mol. Biol. Med. 8: 3-18. H.L. Levy. 1989. Nutritional therapy for selected inborn errors of metabolism J. Am. Coll. Nutr. 8: 54S-60S. A.L. Schwartz and A. Ciechanover. 1999. The ubiquitin-proteasome pathway and pathogenesis of human diseases Annu. Rev. Med. 50: 57-74. J. Kim and D.C. Rees. 1989. Nitrogenase and biological nitgydjdsj.org.cn/yishi/rogen fixation, Biochemistry 33: 389-397. P. Christen, R. Jaussi, N. Juretic, P.K. Mehta, T.I. Hale, and M. Ziak. 1990. Evolutionary and biosynthetic aspects of aspartate aminotransferase isoenzymes and other aminotransferases Ann. N. Y. Acad. Sci. 585: 331-338. G. Schneider, H. Kack, and Y. Lindqvist. 2000. The manifold of vitamin B6 dependent enzymes Structure Fold Des. 8: R1-R6. S.G. Rhee, P.B. Chock, and E.R. Stadtman. 1989. Regulation of Escherichia coli glutamine synthetase Adv. Enzymol. Mol. Biol. 62: 37-92. D. Shemin. 1989. An illustration of the use of isotopes: The biosynthesis of porphyrins Bioessays 10: 30-35. M.Y. Galperin and E.V. Koonin. 1997. A diverse superfamily of enzymes with ATP-dependent carboxylate-amine/thiol ligase activity Protein Sci. 6: 2639-2643. A. Jordan and P. Reichard. 1998. Ribonucleotide reductases Annu. Rev. Biochem. 67: 71-98. J.E. Seegmiller. 1989. Contributions of Lesch-Nyhan syndrome to the understanding of purine metabolism J. Inherited Metab. Dis. 12: 184-196. D.E. Vance and H. Van den Bosch. 2000. Cholesterol in the year 2000 Biochim. Biophys. Acta 1529: 1-8. M.S. Brown and J.L. Goldstein. 1986. A receptor-mediated pathway for cholesterol homeostasis Science 232: 34-47. M.S. Brown and J.L. Goldstein. 1984. How LDL receptors influence cholesterol and atherosclerosis Sci. Am. 25l: (5) 58-66. L. Chan. 1992. Apolipoprotein B, the major protein component of triglyceride-rich and low density lipoproteins J. Biol. Chem. 267: 25621-25624. A. Endo. 1992. The discovery and development of HMG-CoA reductase inhibitors J. Lipid Res. 33: 1569-1582. S. Hakomori.. 1986. Glycosphingolipids Sci. Am. 254: (5) 44-53. A. Kornberg. 1988. DNA replication J. Biol. Chem. 263: 1-4. R.E. Dickerson. 1983. The DNA helix and how it is read Sci. Am. 249: (6) 94-111. J.C. Wang. 1982. DNA topoisomerases Sci. Am. 247: (1) 94-109. T. Lindahl. 1993. Instability and decay of the primary structure of DNA Nature 362: 709-715. C.W. Greider and E.H. Blackburn. 1996. Telomeres, telomerase, and cancer Sci. Am. 274: (2) 92-97. N.A. Woychik. 1998. Fractions to functions: RNA polymerase II thirty years later Cold Spring Harbor Symp. Quant. Biol. 63: 311-317. R. Losick. 1998. Summary: Three decades after sigma Cold Spring Harbor Symp. Quant. Biol. 63: 653-666. J.E. Darnell Jr.. 1985. RNA Sci. Am. 253: (4) 68-78. T.R. Cech. 1986. RNA as an enzyme Sci. Am. 255: (5) 64-75. P.A. Sharp. 1994. Split genes and RNA splicing Cell 77: 805- 815. T.R. Cech. 1990. Self-splicing and enzymatic activity of an intervening sequence RNA from Tetrahymena Biosci. Rep. 10: 239-261. C. Guthrie. 1991. Messenger RNA splicing in yeast: Clues to why the spliceosome is a ribonucleoprotein Science 253: 157-163. A.E. Dahlberg. 2001. Ribosome structure: The ribosome in action Science 292: 868-869. M. Ibba, A.W. Curnow, and D. S?ll. 1997. Aminoacyl-tRNA synthesis: Divergent routes to a common goal Trends Biochem. Sci. 22: 39-42. B.K. Davis. 1999. Evolution of the genetic code Prog. Biophys. Mol. Biol. 72: 157-243. P. Schimmel and L. Ribas de Pouplana. 2000. Footprints of aminoacyl- tRNA synthetases are everywhere Trends Biochem. Sci. 25: 207-209. G.J. Kemp. 2000. Studying metabolic regulation in human muscle Biochem. Soc. Trans. 28: 100-103. G.E. Lienhard, J.W. Slot, D.E. James, and M.M. Mueckler. 1992. How cells absorb glucose Sci. Am. 266: (1) 86-91. | ||